A good understanding of Hadoop Architecture is required to leverage the power of Hadoop. Below are few important practical questions which can be asked to a Senior Experienced Hadoop Developer in an interview. I learned the answers to them during my CCHD (Cloudera Certified Haddop Developer) certification. I hope you will find them useful. This list primarily includes questions related to Hadoop Architecture, MapReduce, Hadoop API and Hadoop Distributed File System (HDFS).
Hadoop is the most popular platform for big data analysis. The Hadoop ecosystem is huge and involves many supporting frameworks and tools to effectively run and manage it. This article focuses on the core of Hadoop concepts and its technique to handle enormous data.
Hadoop is a huge ecosystem and referring to a good hadoop book is highly recommended.
Below list of hadoop interview questions and answers that may prove useful for beginners and experts alike. These are common set of questions that you may face at big data job interview or a hadoop certification exam (like CCHD).
What is a JobTracker in Hadoop? How many instances of JobTracker run on a Hadoop Cluster?
JobTracker is the daemon service for submitting and tracking MapReduce jobs in Hadoop. There is only One Job Tracker process run on any hadoop cluster. Job Tracker runs on its own JVM process. In a typical production cluster its run on a separate machine. Each slave node is configured with job tracker node location. The JobTracker is single point of failure for the Hadoop MapReduce service. If it goes down, all running jobs are halted. JobTracker in Hadoop performs following actions(from Hadoop Wiki:)
- Client applications submit jobs to the Job tracker.
- The JobTracker talks to the NameNode to determine the location of the data
- The JobTracker locates TaskTracker nodes with available slots at or near the data
- The JobTracker submits the work to the chosen TaskTracker nodes.
- The TaskTracker nodes are monitored. If they do not submit heartbeat signals often enough, they are deemed to have failed and the work is scheduled on a different TaskTracker.
- A TaskTracker will notify the JobTracker when a task fails. The JobTracker decides what to do then: it may resubmit the job elsewhere, it may mark that specific record as something to avoid, and it may may even blacklist the TaskTracker as unreliable.
- When the work is completed, the JobTracker updates its status.
- Client applications can poll the JobTracker for information.
How JobTracker schedules a task?
The TaskTrackers send out heartbeat messages to the JobTracker, usually every few minutes, to reassure the JobTracker that it is still alive. These message also inform the JobTracker of the number of available slots, so the JobTracker can stay up to date with where in the cluster work can be delegated. When the JobTracker tries to find somewhere to schedule a task within the MapReduce operations, it first looks for an empty slot on the same server that hosts the DataNode containing the data, and if not, it looks for an empty slot on a machine in the same rack.
What is a Task Tracker in Hadoop? How many instances of TaskTracker run on a Hadoop Cluster
A TaskTracker is a slave node daemon in the cluster that accepts tasks (Map, Reduce and Shuffle operations) from a JobTracker. There is only One Task Tracker process run on any hadoop slave node. Task Tracker runs on its own JVM process. Every TaskTracker is configured with a set of slots, these indicate the number of tasks that it can accept. The TaskTracker starts a separate JVM processes to do the actual work (called as Task Instance) this is to ensure that process failure does not take down the task tracker. The TaskTracker monitors these task instances, capturing the output and exit codes. When the Task instances finish, successfully or not, the task tracker notifies the JobTracker. The TaskTrackers also send out heartbeat messages to the JobTracker, usually every few minutes, to reassure the JobTracker that it is still alive. These message also inform the JobTracker of the number of available slots, so the JobTracker can stay up to date with where in the cluster work can be delegated.
What is a Task instance in Hadoop? Where does it run?
Task instances are the actual MapReduce jobs which are run on each slave node. The TaskTracker starts a separate JVM processes to do the actual work (called as Task Instance) this is to ensure that process failure does not take down the task tracker. Each Task Instance runs on its own JVM process. There can be multiple processes of task instance running on a slave node. This is based on the number of slots configured on task tracker. By default a new task instance JVM process is spawned for a task.
How many Daemon processes run on a Hadoop system?
Hadoop is comprised of five separate daemons. Each of these daemon run in its own JVM. Following 3 Daemons run on Master nodes NameNode – This daemon stores and maintains the metadata for HDFS. Secondary NameNode – Performs housekeeping functions for the NameNode. JobTracker – Manages MapReduce jobs, distributes individual tasks to machines running the Task Tracker. Following 2 Daemons run on each Slave nodes DataNode – Stores actual HDFS data blocks. TaskTracker – Responsible for instantiating and monitoring individual Map and Reduce tasks.
What is configuration of a typical slave node on Hadoop cluster? How many JVMs run on a slave node?
- Single instance of a Task Tracker is run on each Slave node. Task tracker is run as a separate JVM process.
- Single instance of a DataNode daemon is run on each Slave node. DataNode daemon is run as a separate JVM process.
- One or Multiple instances of Task Instance is run on each slave node. Each task instance is run as a separate JVM process. The number of Task instances can be controlled by configuration. Typically a high end machine is configured to run more task instances.
What is the difference between HDFS and NAS ?
The Hadoop Distributed File System (HDFS) is a distributed file system designed to run on commodity hardware. It has many similarities with existing distributed file systems. However, the differences from other distributed file systems are significant. Following are differences between HDFS and NAS
- In HDFS Data Blocks are distributed across local drives of all machines in a cluster. Whereas in NAS data is stored on dedicated hardware.
- HDFS is designed to work with MapReduce System, since computation are moved to data. NAS is not suitable for MapReduce since data is stored seperately from the computations.
- HDFS runs on a cluster of machines and provides redundancy usinga replication protocal. Whereas NAS is provided by a single machine therefore does not provide data redundancy.
How NameNode Handles data node failures?
NameNode periodically receives a Heartbeat and a Blockreport from each of the DataNodes in the cluster. Receipt of a Heartbeat implies that the DataNode is functioning properly. A Blockreport contains a list of all blocks on a DataNode. When NameNode notices that it has not recieved a hearbeat message from a data node after a certain amount of time, the data node is marked as dead. Since blocks will be under replicated the system begins replicating the blocks that were stored on the dead datanode. The NameNode Orchestrates the replication of data blocks from one datanode to another. The replication data transfer happens directly between datanodes and the data never passes through the namenode.
Does MapReduce programming model provide a way for reducers to communicate with each other? In a MapReduce job can a reducer communicate with another reducer?
Nope, MapReduce programming model does not allow reducers to communicate with each other. Reducers run in isolation.
Can I set the number of reducers to zero?
Yes, Setting the number of reducers to zero is a valid configuration in Hadoop. When you set the reducers to zero no reducers will be executed, and the output of each mapper will be stored to a separate file on HDFS. [This is different from the condition when reducers are set to a number greater than zero and the Mappers output (intermediate data) is written to the Local file system(NOT HDFS) of each mappter slave node.]
Where is the Mapper Output (intermediate kay-value data) stored ?
The mapper output (intermediate data) is stored on the Local file system (NOT HDFS) of each individual mapper nodes. This is typically a temporary directory location which can be setup in config by the hadoop administrator. The intermediate data is cleaned up after the Hadoop Job completes.
What are combiners? When should I use a combiner in my MapReduce Job?
Combiners are used to increase the efficiency of a MapReduce program. They are used to aggregate intermediate map output locally on individual mapper outputs. Combiners can help you reduce the amount of data that needs to be transferred across to the reducers. You can use your reducer code as a combiner if the operation performed is commutative and associative. The execution of combiner is not guaranteed, Hadoop may or may not execute a combiner. Also, if required it may execute it more then 1 times. Therefore your MapReduce jobs should not depend on the combiners execution.
What is Writable & WritableComparable interface?
- org.apache.hadoop.io.Writable is a Java interface. Any key or value type in the Hadoop Map-Reduce framework implements this interface. Implementations typically implement a static read(DataInput) method which constructs a new instance, calls readFields(DataInput) and returns the instance.
- org.apache.hadoop.io.WritableComparable is a Java interface. Any type which is to be used as a key in the Hadoop Map-Reduce framework should implement this interface. WritableComparable objects can be compared to each other using Comparators.
What is the Hadoop MapReduce API contract for a key and value Class?
- The Key must implement the org.apache.hadoop.io.WritableComparable interface.
- The value must implement the org.apache.hadoop.io.Writable interface.
What is a IdentityMapper and IdentityReducer in MapReduce ?
- org.apache.hadoop.mapred.lib.IdentityMapper Implements the identity function, mapping inputs directly to outputs. If MapReduce programmer do not set the Mapper Class using JobConf.setMapperClass then IdentityMapper.class is used as a default value.
- org.apache.hadoop.mapred.lib.IdentityReducer Performs no reduction, writing all input values directly to the output. If MapReduce programmer do not set the Reducer Class using JobConf.setReducerClass then IdentityReducer.class is used as a default value.
What is the meaning of speculative execution in Hadoop? Why is it important?
Speculative execution is a way of coping with individual Machine performance. In large clusters where hundreds or thousands of machines are involved there may be machines which are not performing as fast as others. This may result in delays in a full job due to only one machine not performaing well. To avoid this, speculative execution in hadoop can run multiple copies of same map or reduce task on different slave nodes. The results from first node to finish are used.
When is the reducers are started in a MapReduce job?
In a MapReduce job reducers do not start executing the reduce method until the all Map jobs have completed. Reducers start copying intermediate key-value pairs from the mappers as soon as they are available. The programmer defined reduce method is called only after all the mappers have finished.
If reducers do not start before all mappers finish then why does the progress on MapReduce job shows something like Map(50%) Reduce(10%)? Why reducers progress percentage is displayed when mapper is not finished yet?
Reducers start copying intermediate key-value pairs from the mappers as soon as they are available. The progress calculation also takes in account the processing of data transfer which is done by reduce process, therefore the reduce progress starts showing up as soon as any intermediate key-value pair for a mapper is available to be transferred to reducer. Though the reducer progress is updated still the programmer defined reduce method is called only after all the mappers have finished.
What is HDFS ? How it is different from traditional file systems?
HDFS, the Hadoop Distributed File System, is responsible for storing huge data on the cluster. This is a distributed file system designed to run on commodity hardware. It has many similarities with existing distributed file systems. However, the differences from other distributed file systems are significant.
- HDFS is highly fault-tolerant and is designed to be deployed on low-cost hardware.
- HDFS provides high throughput access to application data and is suitable for applications that have large data sets.
- HDFS is designed to support very large files. Applications that are compatible with HDFS are those that deal with large data sets. These applications write their data only once but they read it one or more times and require these reads to be satisfied at streaming speeds. HDFS supports write-once-read-many semantics on files.
What is HDFS Block size? How is it different from traditional file system block size?
In HDFS data is split into blocks and distributed across multiple nodes in the cluster. Each block is typically 64Mb or 128Mb in size. Each block is replicated multiple times. Default is to replicate each block three times. Replicas are stored on different nodes. HDFS utilizes the local file system to store each HDFS block as a separate file. HDFS Block size can not be compared with the traditional file system block size.
What is a NameNode? How many instances of NameNode run on a Hadoop Cluster?
The NameNode is the centerpiece of an HDFS file system. It keeps the directory tree of all files in the file system, and tracks where across the cluster the file data is kept. It does not store the data of these files itself. There is only One NameNode process run on any hadoop cluster. NameNode runs on its own JVM process. In a typical production cluster its run on a separate machine. The NameNode is a Single Point of Failure for the HDFS Cluster. When the NameNode goes down, the file system goes offline. Client applications talk to the NameNode whenever they wish to locate a file, or when they want to add/copy/move/delete a file. The NameNode responds the successful requests by returning a list of relevant DataNode servers where the data lives.
What is a DataNode? How many instances of DataNode run on a Hadoop Cluster?
A DataNode stores data in the Hadoop File System HDFS. There is only One DataNode process run on any hadoop slave node. DataNode runs on its own JVM process. On startup, a DataNode connects to the NameNode. DataNode instances can talk to each other, this is mostly during replicating data.
How the Client communicates with HDFS?
The Client communication to HDFS happens using Hadoop HDFS API. Client applications talk to the NameNode whenever they wish to locate a file, or when they want to add/copy/move/delete a file on HDFS. The NameNode responds the successful requests by returning a list of relevant DataNode servers where the data lives. Client applications can talk directly to a DataNode, once the NameNode has provided the location of the data.
How the HDFS Blocks are replicated?
HDFS is designed to reliably store very large files across machines in a large cluster. It stores each file as a sequence of blocks; all blocks in a file except the last block are the same size. The blocks of a file are replicated for fault tolerance. The block size and replication factor are configurable per file. An application can specify the number of replicas of a file. The replication factor can be specified at file creation time and can be changed later. Files in HDFS are write-once and have strictly one writer at any time. The NameNode makes all decisions regarding replication of blocks. HDFS uses rack-aware replica placement policy. In default configuration there are total 3 copies of a datablock on HDFS, 2 copies are stored on datanodes on same rack and 3rd copy on a different rack.
Can you think of a questions which is not part of this post? Please don’t forget to share it with me in comments section & I will try to include it in the list.
Its always been good to find such a good interview questions. It is very useful. Thanks for this post.
The NameNode is a Single Point of Failure for the HDFS Cluster. When the NameNode goes down, the file system goes offline.
I'm wondering what is the SencondaryNameNode for?
By default a new task instance JVM process is spawned for a task.
a good interview questions. It is very useful. Thanks for this post.
Hi,
Nice post. I wanted to share some interview questions (map/reduce)
1. How to implement sort for 1 trillion files using map/reduce?
2. How to join 2 datasets A and B (Need to move single entry even if it s present in both datasets) using Map/Reduce framework?
@Maheshwaran – Thanks for your comment. I would like to cover these questions in Map/Reduce categories. Stay tuned.
@Anonymous
SencondaryNameNode: Is the worst name ever given to the module in the history of naming conventions. It is only a check point server which actually gets a back up of the fsimage+edits files from the namenode.
It basically serves as a checkpoint server.
But it does not come up online automatically when the namenode goes down!
Although the secondary namenode can be used to bring up the namenode in the worst case scenario (manually) with some data loss.
It is bad practice to run the NameNode and JobTracker on the same node, except for small (<100 machines) clusters.
The locations of the input data is determined by the client that is submitting the mapreduce application, not the JobTracker.
NameNode is a light weight process and chances of going down is fairly negligible.
Hi,just few additional details for question 20, namely "How is it different from traditional file system block size?"- HDFS was design to store very large amount of data, default block size is 64 MB => fewer metadata information per file => quickly basic operations for files.- HDFS allows for fast streaming reads of data, by keeping large amounts of data sequentially laid out on the disk. This one is very important for a fast execution of a MapReduce job. Anyway, there are solutions also for work with many little files, ex. MultiFileInputFormat.You can find much more difference between HDFS and traditional file systems here :
Does the replication of Data on other slave nodes take place only after a Data node failure or even before that?
@Sushma – The data is stored on slave nodes redundantly to use them as fail over nodes. Data can not be copied once a node is failed. Each data block is stored redundantly on HDFS to reduce node failure scenario impact. The redundancy can be configured based on the need.
secondary namenode is for creating checkpoint(which is merging Fsimage and edit log file) its not a backup node for namenode.
Can some experts answer this please
First I want to thank you for your time to help others
This is very useful information and explanation simplified.
SENARIO:
BLOCK size is "128 MB"
Number of DATA Nodes in cluster are "15".
How a file size size of "3 GB" will be stored, which will be segmented to 24 blocks? Will there araise any exception as number of blocks are greater than number of data nodes?
No, Each data node can have multiple number of blocks depending on size of the data node. If a data node is 64gb with block size 64MB, it can have 1000 blocks.
We are satisfied pleased to you that you provide interview question-answers which is really helpful to fresher.I read all your post and most you try to show all the standard language interview solution.
Awesome collection dude.Thanks a lot for sharing this quality content
secondary name node is the not he one which can take control of the system automatically when name node fail.but the system admin can make that secondary name node as the name node and other machine as the secondary name node but it takes some time till this happens the system is in the stop mode and the processes running on the cluster will stop,that i why the name node is called as the single point failure and it has been overcome by cloudera in the yarn(mapreducev2).
It happens as soon as the data is copied on to the HDFS. As I understand the client copies the HDFS file to Data Node 1 which copies to Data Node 2 which copies to Data Node 3
— Subu
It is very useful stuff when we face interview and great stuff for understanding internals..Thank you
still lot of questions regarding partitions,mapreduce2,hdfs..then it is very very useful.Thank you
sir,,these question are very useful to us,,,kindly publish more questions sir….
You can find more than 130 question and answers here:
I always see that companies look for 6-8 experience in Database architect or data warehousing. Is there any position for freshers with good knowledge of hadoop and distributed operation.
Thanks for the posts. Good Job and it is very useful.
I am a beginner in hadoop mapreduce, applying for job in this field. This post helped a lot..thanks..
Hadoop Certification Question I gathered from difference sources and I'm able to certification. I've prepared a pdf file for the same. If someone need pl let me know.
 Hadoop Certification Question I gathered from difference sources and I'm able to certification. I've prepared a pdf file for the same. If someone need pl let me know.
Dharmraj, can you please send me the pdf at [email protected]?
Dear Dharmaj, I am newbie to Hadoop ,can you please send me the any pdf related to Hadoop (including Certification pdf)at [email protected]
Thanks in advance.
Can you send it to [email protected]
Can you please send it to- [email protected]
Dharmraj, can you please send me the certification pdf at [email protected]?
Dharmraj, can you please send me the certification pdf at [email protected]?
Dharmraj, can you please send me the certification pdf at [email protected]?
Hi Dharmraj Buwade, Please forward PDF to [email protected], i have booked a slot on 26th of this month, So it wud b great if i get this PDF asap.
Thanks in Advance !!!
Regards
Bala Chander
Please send the pdf to [email protected]
Hi Dharmaraj Buwade, Please send the pdf to [email protected]…
Thanks in Advance!!!
Regards,
Arunkumar
HI Dharmraj BuwadePlease share those questions … [email protected]
Hi Dharmraj,
Would you please send me the Hadoop Certification Questions PDF to the below email is?
[email protected]
Regards,
Dipankar
Dharmraj, can you please send me the certification pdf at ***[email protected]***
please send me the certification pdf at [email protected]
Hi Dharmraj,
Would you please send me the Hadoop Certification Questions PDF to the below email is?
[email protected]
Regards,
venkat
Hi Dharmraj
I have planned to take the certification on 12th of this month. Could you please share the PDF for my preparation?
[email protected]
Regards
Vasu
HI THIS IS RAJESH I NEED HADOOP MATERIAL ,CERTIFACTION COURSE MATERIAL PLZ SEND TO [email protected]
thanks for providing such a good information
Hi Dharmraj
I have planned to take the certification on 12th Jul'13, could you share the PDF to below email?
[email protected]
Regards
Vasu
Please share those questions with me too 🙂
[email protected]
Thanks
Hi Dharma
Can you please send me the certification material (pdf or Qns) to my mail ([email protected])
Thanks in advance
Anil
Hi Sir,
Can you please forward me the certification pdf to [email protected]
Thanks & Regards,
B.V.SURESH BABU.
Dharmraj, can you please send me the certification pdf at [email protected]?
Hi, can you pls send the certification pdf [email protected]
Dharmraj, please send me the certification pdf at [email protected]
Hi Dharma,
Can you please send me the certification pdf as well? Email id – [email protected]
regards
Dheeren
Hi Dharmraj, could you please send me the certification pdf at [email protected], thank you.
could you please send me certification pdf to [email protected]..Thank You in advance.
Hi Dharma,
Could you please send me the certification PDF. My exam is on 3rd Aug'13.
I need it for my final preparation.
[email protected]
Thanks in advance.
Dhana.
I am preparing for the hadoop certification. Can you please email me at [email protected]
could you please send me certification pdf to [email protected]..Thank You in advance.
Please share me the certification questions. My mail id [email protected]
Hi Dharma –
Kindly share the certification pdf file with me as well – my id [email protected]
Thanks
Siva
Hi Dharmraj, Kindly share the certification pdf at [email protected], thank you.
Hi Dharma,
Please send me the certification pdf file and other material for Hadoop on [email protected].
Thanks..:)
Hi Dharma,
Could you please mail that pdf to "[email protected]"
HI Dharmraj Buwade,
I am planning to take the exam next month, can you pls share to mail – [email protected].
Thanks in advance.
HI Dharmraj Buwade,
I am planning to take the exam next month, request you to share the certification questions – [email protected].
Thanks in advance,
Hi Dharmraj,
I am planning to give the certification, Kindly share the certification pdf at
[email protected],
thank you.
Can you pl send me to [email protected]
Thanks,
Manohar.
Hi,
If any one got the interview questions, please send to my e-mailid:
[email protected]
Hi Dharma,
Please send it to my mail id [email protected]
Thanks in advance
hi Dharma raj,
i am very new to hadoop.and I am trying to learn it as fast as I can.will u plz send the documentation and pdf for me to this email
"[email protected]".
u r material may be helpful to me
regards ramana
thank you.
Please share the PDF for Hadoop certification to me also.
[email protected]
Will really appreciate if you can send me to [email protected]
Thanks!
Krunal
Hi
can u pls send me that pdf to [email protected]
thanks in advance,
mhnr.
@Unknow: Are you sure what have you written " name node is called as the single point failure and it has been overcome by cloudera in the yarn(mapreducev2)"?
How mapreduce version is related to Namenode. MRV2 overcome the SPOF of jobtracker not of Namenode. Namenode SPOF handles by hdfs high availablity.
Could you please send the certification questions/pdf to [email protected].
Thank you.
Please share the PDF for Hadoop certification to me also.
[email protected]
I want to do certification, could you please send me the certification PDFs and other materials related to Hadoop.
My email id is "[email protected]"
Thanks
Raj
Hi,
Can you please send the certification materials to my mail id sijeeshkt at gmail dot com
Thanks..
Sijeesh
Could you please send the materials to my email id [email protected]
Hi Guys,
Nice details.
I am newbie to Hadoop and planning to take cloudera hadoop developer certification, can you please send me the any pdf related to Hadoop (including Certification pdf)at [email protected]
Could you please send the certification materials to [email protected]
Please share the PDF for Hadoop certification to me also.
[email protected]
Could you please send the certification materials to [email protected]
These hadoop questions are very helpful to blush up my hadoop concepts. Thanks!
Please share the PDF for Hadoop certification to me also. [email protected]
1. Use Secondary Sorting in Reduce job.
2. Store Dataset-A in Distributed Cache at the Mapper side using 'config' method. Then perform joining operation in 'map' method.
hi dharamraj , can you send the materials to [email protected]
Could you please send the certification materials to [email protected]
Could you please send the certification materials to [email protected]
Could you please send me at [email protected]
Dharmraj, please send me the pdf at [email protected]
Please send to [email protected]
Hi Dharma –
Kindly share the certification pdf file with me as well – my id [email protected]
Thank You in advance.
Thanks
Aman
Hi Socky,
I am a newbie to Hadoop,
For the answer 2, it is a performance overhead when we use distributed cache especially when the input file runs in GB. We have mapper side joins and reducer side joins to implement this.
Please correct me if I am wrong.
Dharmraj, please send me the pdf at [email protected]
Dharmraj, please send me the pdf at [email protected]
Can you please share the document to my Id [email protected]
Appreciating your help
Thanks
@rvi: High availability which removes the namenode as the single point of failure is a feature of 2.x release of Hadoop. So yes it is tied to a release. Because 1.x and 0.22 Hadoop releases does not support HDFS federation and high-availability. Although, I agree YARN and high availability are not really related because YARN is MapReduce2 runtime feature. Thanks, Rashid Khan
Hi Dharma
Kindly share the certification pdf file with me as well – my id:- [email protected]
Thank You in advance.
Thanks
mahesh
Hi
Dharmraj Buwade
Kindly share the certification pdf file with me as well – my id :- [email protected]
Thank You in advance
Dear Dharmra
Can you please send me the certification pdf at moustafa_fci @yahoo.com
Thanks
Hi Dharma
Kindly share the certification pdf file with me as well – my id:- [email protected]
Thank You in advance.
Regards
Pavan.
Dharmraj, please send me the pdf at [email protected]. Thanks in advance.
Hi Dharmraj, please send me the pdf at [email protected]. Thanks in advance.
please send me [email protected]
Hi Dharmraj, Can you send the Hadoop certification pdf to [email protected]
Hi Dharmraj, Please send me the certification pdf at [email protected]. Thanks in advance.
Thanks
Gopal
Hi Dharmraj, Please send me the Hadoop certification pdf to [email protected].
share with me at [email protected]
Please send me [email protected]
HI Dharmraj Buwade,
I am planning to take the exam next month, can you pls share to mail – [email protected]
Thanks in advance.
Hi Dharmraj, could you please send me certification material to [email protected]
Can you send me this to [email protected]
Thx,:) 🙂
Albert
Hi ,
I am planning to take certification. Request you to send the material you have prepared to [email protected]
Awesome Info, Thanks for sharing this valuable info.
Hi,
What if secondary name down, how it impacts?
Regards,
Sagar
Hi,
what if secondary name node down how it impacts..
Regards,
Sagar
can u please send to [email protected]
Hi
Please share the questions to my email [email protected]
Thanks
Hi Dharmraj
Appreciate if you share these certification questions to my mail id [email protected]
Thanks, Sambeet
Hi Dharma – Kindly share the certification pdf file with me as well – my id [email protected] You in advance.Thanks
This comment has been removed by the author.
Dear Dharmra
Can you please send me the certification pdf at [email protected]
Thanks
Please send it to [email protected]
Please share with me too,
[email protected]
I do have lot of material for Hadoop. Guys let me know if any one wants the same.
Does MapReduce programming model provide a way for mappers to communicate with each other? In a MapReduce job can a mapper communicate with another mapper?
Please send me to this Id:[email protected]
please share to this email Id: [email protected]
HI Dharmraj,
Please share those questions. My mail ID is: [email protected]
Dharmraj, can you please send me the pdf at [email protected]?
Hi Dharmaraj,
Please do share with me too my mail id is [email protected]. Thanks…………
please share at [email protected]
i am new to linux and hadoo/hbase. could you please send me the pdf at [email protected]
Hi,Thank you sharing interview questions and answers. It is useful to me in interviews…
Appreciate if you share these certification questions to my mail id [email protected]
Thanks,
sgr
Hi Dharmraj,
Please share at [email protected]
Hi Dharmraj,
please share at [email protected]
Hi Dharmraj,
please share at [email protected]
Hi Dharma
Plz send the pdf at [email protected].
Thanks
thank u so much
Hi Dharmraj Buwade,
Can you please share the pdf file which you have created for your hadoop certification preparation to [email protected]
Thanks, Balaji
Hi Dharmraj, Can you send the Hadoop certification pdf to [email protected]
nice blog
Hi Dharmraj, Can you send the Hadoop certification pdf to [email protected]
Thanks
nice blog
Dear Dharmaj, I am taking certification exam on Hadoop ,can you please send me the any pdf related to Hadoop (including Certification pdf)at [email protected]
Thanks in advance
Hi Dharmraj,
Could you Please send Hadoop Certification pdf to [email protected]
Thanks
Hi Dharmraj,
Please share the pdf file to [email protected]
Hi Dharma, Could you please send to [email protected]?
Hi
Dharmraj Buwade
Kindly share the certification pdf file with me as well – my id :- [email protected]
Thank You in advance
Hi Dharmraj,
Kindly share the certification pdf file with me as well – my id :- [email protected]
Thank You in advance
Can you please share the Hadoop CCDH question pdf with me at [email protected]
Hi Dharmraj Buwade,
Can you please share the pdf file which you have created for your hadoop certification preparation to [email protected]
Thanks in advance!!!!
yes we can
if you get the question pdf, could you share with me at [email protected]? thanks!
Hi ..
Nope, I do not see any reason for exceptions.
3 GB file when expressed in terms of MB will be 3072 MB file. So dividing it by the block size i.e 24 gives the # of required blocks. In this case 3072 / 128 = 24. So the 3 GB file will be splitted into 24 blocks and based on replication factor the number of copies will be placed over 15 nodes.
Hi Dharmraj Buwade,
Could you please share the certification prep pdf file to email ID: [email protected], [email protected]
Thanks in advance!!!!
Hi Dharmraj,
Can you please share the certification prep pdf to my email ID: [email protected]
Thanks in advance!!!!
Hi
Dharmraj Buwade
Kindly share the certification pdf file with me as well – my id :- [email protected]
Thank You in advance
HI dharma raj,
plz send your file ,i also need to do certification on hadoop.. my mail id is [email protected]
Thanks
HI Dharmraj ,
Can you please mail the pdf to me at [email protected]
Thanks a lot for your efforts.
Hi Dharmraj
Can you please share the certification PDF file with me ….
My id : [email protected]
Thank you in advance
Better if you can add partitioner and sorting techniques as well.
Hi Dharmraj
Can you please share the certification PDF file with me …. [email protected]
Hi Dharmraj/Guys, please share the interview questions to [email protected]
Please share me the Certification pdf to [email protected]
Thanks in advance..
Hi Guys,
If you have received any interview questions from Dharmraj, please send it across to [email protected]..
Please send cert questions pdf file to my email id [email protected]
Thank you very much
Hello – Please share when you get to see this message at [email protected]
can you send me at [email protected]
Hey Dharmraj, thanks for these really good questions and answers, and also for this nice discussion.May you please forward the questions to [email protected].
Thanks a ton!
Rakesh
Hi Dharam
Can you please share your valuable materials on Hadoop cert to [email protected]
Thanks dude..
Hello Dharam,
Can you please forward the questions to [email protected].
Thanks!
HI Dharmraj Buwade,
I am planning to take the exam next month, can you pls share to mail – [email protected]
Thanks in advance.
HI Dharmraj Buwade
Could you please share those questions …[email protected]